Hardness for Hypergraph Coloring
نویسنده
چکیده
We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2(logN) 1/10−o(1) colors, where N is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. In [17], Guruswami, H̊astad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 22Ω( √ log logN) colors. Their result is obtained by composing standard Label-Cover with an inner-verifier based on Low-Degree-Long-Code, using Reed-Muller code testing results by Dinur and Guruswami [12]. Using a different approach in [29], Khot and Saket constructed a new variant of Label-Cover, and composed it withQuadratic-Code to show quasi-NP-hardness of coloring 2-colorable 12-uniform hypergraphs with 2(logN)c colors, for some c around 1/20. Their construction of Label-Cover is based on a new notion of superposition complexity for CSP instances. The composition with inner-verifier was subsequently improved by Varma, giving the same hardness result for 8-uniform hypergraphs [37]. Our construction uses both Quadratic-Code and Low-Degree-Long-Code, and builds upon the work by Khot and Saket. We present a different approach to construct CSP instances with superposition hardness by observing that when the number of assignments is odd, satisfying a constraint in superposition is the same as odd-covering a constraint. We employ Low-Degree-Long-Code in order to keep the construction efficient. In the analysis, we also adapt and generalize one of the key theorems by Dinur and Guruswami [12] in the context of analyzing probabilistically checkable proof systems.
منابع مشابه
Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions
In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraphwith 2 Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. In this note, we show that we can reduce the arity of their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hyperg...
متن کاملA note on reducing uniformity in Khot-Saket hypergraph coloring hardness reductions
In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraph with 2(logn) Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. We reduce the arity in their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hypergraph coloring hardness r...
متن کاملApproximate Hypergraph Coloring under Low-discrepancy and Related Promises
A hypergraph is said to be χ-colorable if its vertices can be colored with χ colors so that no hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a fraction 2−k+1 of hypered...
متن کاملThe Hardness of 3 - Uniform Hypergraph Coloring
We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness re...
متن کاملStrong Inapproximability Results on Balanced Rainbow-Colorable Hypergraphs
Consider a K-uniform hypergraph H = (V,E). A coloring c : V → {1, 2, . . . , k} with k colors is rainbow if every hyperedge e contains at least one vertex from each color, and is called perfectly balanced when each color appears the same number of times. A simple polynomialtime algorithm finds a 2-coloring if H admits a perfectly balanced rainbow k-coloring. For a hypergraph that admits an almo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015